Module plan

Topic :
Subject:
Target Group: Mode:

Platform:
Presenter:

Biostatistics
Public Health Dentistry
Undergraduate Dentistry
Powerpoint
Institutional LMS
Dr Sandesh N

Biostatistics

- Dr Sandesh \mathcal{N}

Dept of community dentistry

Introduction

Normal BP $\quad 120 / 80 \mathrm{~mm} \mathrm{Hg}$
Europeans are taller than Asians
Average male adult weighs 70kgs
Drug A is better than drug B

- Endless

Cannot be arrived by just Raw data
Numbers tell tales Speak the language of STATISTICS Adds meaning to data helps to interpret data
Thus lending significance to the study

Descriptive statistics

Statistic
means a measured or counted fact or a piece of information stated as a figure
Data
Can be defined as a set of values recorded on one or more individuals or observational units
VARIABLE
A general term for any feature of the unit which is observed or measured.

STATISTICS

Is the science of compiling, classifying \& tabulating numerical data and expressing the results in a mathematical or graphical form. OR
Statistics is the study of methods \& procedures for collecting, classifying, summarizing \& analyzing data \& for making scientific inferences from such data.

- Prof P.V.Sukhatme

BIOSTATISTICS

Is the branch of statistics applied to biological or medical sciences (biometry). OR

- Is that branch of statistics concerned with mathematical facts and data relating to biological events.

Basic principles of biostatistics

Collection of data
Presentation of data
Summarization of data
Analysis of data
Interpretation of data

Collection of data

Data

1. Qualitative
2. No notion of magnitude or size of the characteristics
3. Calculated by counting the individuals and not by measurements
4. Quantitative
5. Have an magnitude
6. Measured either in interval or ratio scale
7. Observation ascends or descends from 0 or any starting point
8. Measurable in whole or in fractions

Data
 1. Primary data
 2. Secondary data

Collection of primary data

1. Observation
2. Interview
3. Telephonic interview / Personal Interview

Direct/indirect
2. Structured / Unstructured
3. Questionnaire

1. $M C Q$
2. Open End Questions
3. Closed End Questions
4. Schedule
5. Clinical examination

Collection of Secondary data

Published
Articles, conference reports, newspapers

Unpublished
Dairies, letters, Biographies

Sampling

Target population
Is the group of individuals to whom the investigator wants the conclusion of his study to apply

Sample

Is a part or subset of the target population that takes part in the investigation
Sampling frame
A list containing all sampling units is called sampling frame

Sampling design / sampling technique

 Sampling is a definite plan for obtaining sample from the sampling frame or population1. Probability sampling
2. Non Probability sampling

Probability sampling designs

1. Simple random sampling
2. Stratified random sampling
3. Multistage sampling
4. Systematic sampling
5. Cluster sampling
6. Multiphase sampling

Simple random sampling

1. Lottery method
2. Table of random numbers

Applicable only when population is small, homogenous \& the readily available

Stratified random sampling
Followed when population is not homogenous
First divide into homogenous groups or classes $=$ strata

Sample is drawn from each strata by random method Gives more representation sample \& gives greater accuracy

Multistage sampling Systematic sampling
Cluster sampling
Multiphase sampling

Non-probability sampling designs

Convinience sampling design
Judgement sampling
Quota sampling
Snowball sampling
Network sampling

Presentation of data

Advantages
Becomes concise without losing the details
Arouse interest in readers
Become simple \& meaningful
Need few words to explain
Become helpful for further analysis

1. Tabulation
2. Drawing

Tabulation

Are devices for presenting data from a mass of statistical data

1. Simple tabulation
2. Complex tabulation

Drawings (Graphs / diagrams)

Quantitative

1. Histogram
2. Frequency Polygon
3. Frequency curve
4. Line Chart
5. Cumulative frequency diagram or Ogive curve
6. Scatter or Dot diagram

Qualitative

1. Bar diagram
2. Pie diagram
3. Pictogram
4. Spot map

Histogram

Variable on the x axis (abscissa)
Frequency on the y axis (ordinate)

Frequency polygon

Frequency Curve

Line graph

Dr Sandesh N

Cumulative curve or Ogive

Scatter or dot Diagram

Bar diagram

knowledge about dental caries

Bar diagram is of three types

1. Simple Bar diagram
2. Multiple Bar diagram
3. Proportional Bar diagram

Pie or Sector Diagram

Size of the angle $=\frac{\text { Class interval }}{\text { Total Observation }} \times 360$

Class	NO.	Angles
FIRST year	93	107
SECOND year	84	97
THIRD year	85	98
FOURTH year	51	59
Total	313	

Pictogram or Picture diagram

Map diagram or Spot map

Summarizing the data

Measure of central tendency

1. Mean
2. Median
3. Mode

Measure of Dispersion

1. Range
2. Mean deviation
3. Standard deviation
4. Coefficient of variation

Mean

It is a arithmetic mean or arithmetic average which is obtained by dividing the total of all observations by the number of observations

$$
\bar{x}
$$

Eg. calculate the mean of DMFT scores 2.3, 2.0,2.7,3.0,2.0.
$\begin{array}{llllllll}\bar{x} & \begin{array}{llllll}2.3 & 2.0 & 2.7 & 3.0 & 2.0 & \frac{12}{5}\end{array} & 2.4\end{array}$

Geometric mean (GM) nth root of the product

$\log x$
n

When the variation between the lowest and the highest value is very high, geometric mean is advised \& preferred

Harmonic mean (HM) is the reciprocal of the arithmetic mean of the reciprocal of the observations

Dr Sandesh N

Median

is the middle value, which divides the observed values into two equal parts, when the values are arranged in ascending or descending order

$$
\frac{n 1}{2}
$$

Eg. calculate the median of DMFT scores 2.3, 2.0, 2.7,3.0,2.0. arrange in asc order,
2.0,2.0.2.3,2.7,3.0 $\quad \frac{5}{2} \quad 6 \quad 3^{\text {rdvalue }}$ ie 2.3

Mode

is the value of the variable which occurs most frequently

$$
\text { Mode }=(3 m e d i a n \quad 2 m e a n)
$$

Eg. calculate the mode of DMFT scores 2.3, 2.0,2.7,3.0,2.0. Mode 2.0
$\begin{array}{llllll}\text { Mode } & 3 & 2.3 & 2 & 2.4 & 2.1\end{array}$

Measure of Dispersion

Range
It is the difference between highest and the lowest values in the series

Variance or mean deviation

Is the appropriate measure of dispersion for interval or ratio level data
Computes how far each score is from the mean

This is done by $\quad x \quad \bar{x}$

Each score will have a deviation from the mean, so to find the average deviation $=>$ we have to add all the deviations and divide it by number of scores (just like calculating mean)

$$
\begin{aligned}
& \text { i.e. } \frac{x \quad \bar{x}}{N} \\
& \text { but.... } \quad x \quad \bar{x} \quad 0
\end{aligned}
$$

So to eliminate this zero, square the deviations which eliminates the (-) sign

$$
\text { i.e. } \frac{x \bar{x}^{2}}{N} S^{2}
$$

- is the average of the squared deviations

Standard deviation(Root Mean Square deviation)

Is defined as the square root of the arithmetic mean of the squared deviations of the individual values from their arithmetic mean
$S D$

For small samples
$S D \quad S \quad$ For large samples

For frequency distribution

$S D \quad \sqrt{\frac{f x \bar{x}^{2}}{N 1}}$ For small samples
$S D \quad s \quad \sqrt{\frac{f x \bar{x}^{2}}{N}} \quad$ For large samples

Uses of SD

1. Summarizes the deviations of a large distribution from mean in one figure used as unit of freedom
2. Indicates whether the variation from the mean is by chance or real
3. Helps finding standard error- which determines whether the difference b / n means of two samples is by chance or real
4. Helps finding the suitable size of the sample for valid conclusions

Standard error

Standard deviation of mean values
Used to compare means with one another

SE
 $\frac{S D}{\sqrt{n}}$

Coefficient of variation

is a measure used to compare relative variability
I.e,

Variation of same character in two or more different series .
(eg pulse rate in young \& old person)
Variation of two different characters in one \& same series .
(eg height \& weight in same individual)
$C V \quad \frac{\text { Standard Deviation }}{\text { Mean }} 100$

Normal curve and distribution

The histogram of the same frequency distribution of heights, with large number of observations \& small class intervals gives a frequency curve which is symmetrical in nature Normal curve or Gaussian curve

Normal curve

Characteristics of normal curve
Bell shaped
Symmetrical
Mean, Mode \& Median coincide
Has two inflections the central part is convex, while
at the point of inflection the curve changes from
convexity to concavity

On preparing frequency distribution

 with small class intervals of the data collected, we can observe1. Some observations are above the mean \& others are below the mean
2. If arranged in order, maximum number of frequencies are seen in the middle around the mean \& fewer at the extremes decreasing smoothly
3. Normally half the observations lie above \& half below the mean \& all are symmetrically distributed on each side of mean
A distribution of this nature or shape is called Normal or Gaussian distribution

Arithmetically

mean $1 S D$ limits , include 68.27% observatio ns
mean $2 S D$ limits, include 95.45% observatio ns
mean 1.96SD limits, include 95% observatio ns
mean 3 SDlimits, includes 99.73% observatio ns
mean $2.58 S D$ limits, includes 99% observatio ns

Normal curve and distribution

Dr Sandesh N

Height in cm	frequency of each group		frequency with in height limits of	
142.5	3			
145.0	8			
147.5	15			
150.0	45			
152.5	90			
155.0	155	Mean	Mean	Mean
157.5	194	$\pm 1 \mathrm{SD}$	$\pm 2 \mathrm{SD}$	$\pm 3 \mathrm{SD}$
160.0(M)	195	680	950	995
162.5	136	68\%	95\%	99\%
165.0	93			
167.5	42			
170.0	16			
172.5	6			
175.0-177.5	2			
Mean	160.0	SD	5 cm	

Skewness

Skewness as the static to measure the asymmetry
coefficient of skewness is 0

Positively (right) skewed

Negatively (left) skewed

Bimodal

kurtosis

Kurtosis is a measure of height of the distribution curve
Coefficient of kurtosis is 3

Tests of significance

Population

is any finite collection of elements
I.e individuals, items, observations etc,.

Sample

is a part or subset of the population
Parameter
is a constant describing a population
Statistic
is a quantity describing a sample, namely a function of observations

Mean	Statistic (Greek)	Parameter (Latin)
Standard Deviation	s	
Variance	s^{2}	2
Correlation coefficient	r	N
Number of subjects	n	

Hypothesis testing

Hypothesis H
is an assumption about the status of a phenomenon or is a statement about the parameters or form of population

Null hypothesis or hypothesis of no difference

States no difference between statistic of a sample \& parameter of population or b/n statistics of two samples

This nullifies the claim that the experiment result is different from or better than the one observed already
Denoted by H_{0}

Alternate hypothesis
Any hypothesis alternate to null hypothesis, which is to be tested Denoted by H_{1}

Note: the alternate hypothesis is accepted when null hypothesis is rejected

Type I \& type II errors

	H_{0} Accept	H_{1} Accept
H_{0} is true	No error	Type I error
$H_{1} \quad$ is true	Type II error	No error

Type I error =
Type II error =

When primary concern of the test is to see whether the null hypothesis can be rejected such test is called Test of significance

The probability of committing type I error is called P value

Thus p-value is the chance that the presence of difference is concluded when actually there is none
Type I error important- fixed in advance at a low level such upper limit of tolerance of the chance of type I error is called Level of Significance ()
Thus
of type I error

Difference b/n level of significance \& Pvalue -

LOS

1) Maximum tolerable chance of type I error is fixed in advance

P-value

1) Actual probability of type I error
2) calculated on basis of data following procedures

The P-value can be more than
When P-value is <than
results is statistically significant

The level of significance is usually fixed at $5 \%(0.05)$ or $1 \%(0.01)$ or 0.1% (0.001) or 0.5\% (0.005)
Maximum desirable is 5% level When P-value is b / n
0.05-0.01 $=$ statistically significant
< than 0.01= highly statistically significant
Lower than 0.001 or $0.005=$ very highly significant

Sampling Distribution

Confidence limits 95\%

Tests of significance

Are mathematical methods by which the probability (P) or relative frequency of an observed difference, occurring by chance is found Steps \& procedure of test of significance

1. State null hypothesis H_{0}
2. State alternate hypothesis H_{1}
3. Selection of the appropriate test to be utilized \& calculation of test criterion based on type of test
4. Fixation of level of significance
5. Select the table \& compare the calculated value with the critical value of the table
6. If calculated value is > table value, H_{0} is rejected
7. If calculated value is < table value, H_{0} is accepted
8. Draw conclusions

TESTS IN TEST OF SIGNIFICANCE

Parametric
(normal distribution \&
Normal curve)

Quantitative data
\downarrow

1) Student t test
2) Paired
3) Unpaired
4) Z test
(for large samples)
5) One way ANOVA
6) Two way ANOVA
7) Z prop test
8)

Non-parametric (not follow
normal distribution)

Qualitative
(quantitative converted to qualitative)

1. Mann Whitney U test
2. Wilcoxon rank test
3. Kruskal wallis test
4. Friedmann test

Paired t test \longrightarrow Test of diff b/n \Rightarrow Wilcoxon signed Paired observation rank test

Two way Anova \Rightarrow Comparison of groups \Rightarrow Friedmann test values on two variables
 B / n two variable

Kendall s rank correlation

Student t test

Small samples do not follow normal distribution as the large ones do => will not give correct results
Prof W.S.Gossett Student t test pen name student

It is the ratio of observed difference b / n two mean of small samples to the SE of difference in the same

Actually, t-value Z-value of large samples, but the probability (P) of this is determined by reference t table
Degree of freedom (df)- is the quantity in the denominator which is one less than independent number of observations in a sample

For unpaired t test $=n_{1} n_{2} 2$
For paired t test $=n-1$

Criteria for applying t test

Random samples
Quantitative data
Variable follow normal distribution
Sample size less than 30
Application of t test

1. Two means of small independent sample
2. Sample mean and population mean
3. Two proportions of small independent samples

Unpaired t test

I) Difference \mathbf{b} / \mathbf{n} means of two independent samples
Data

	Group 1	Group 2
Sample size	n_{1}	n_{2}
Mean	\bar{x}_{1}	\bar{x}_{2}
$S D$	$S D_{1}$	$S D_{2}$

1) Null hypothesis $\begin{array}{llll}H_{0} & \bar{x}_{1} & \bar{x}_{2} & 0\end{array}$
2) Alternate hypothesis $\begin{array}{lllll}H_{1} & \bar{x}_{1} & \bar{x}_{2} & 0\end{array}$
3) Test criterion t

$$
\frac{\left|\begin{array}{cc}
\bar{x}_{1} & \bar{x}_{2}
\end{array}\right|}{E \bar{x}_{1}} \bar{x}_{2}
$$

here $S E$ of $\quad \bar{x}_{1} \quad \bar{x}_{2}$ is calculated by

$$
S E \text { of } \bar{x}_{1} \quad \bar{x}_{2} \quad S D \sqrt{\frac{1}{n_{1}}} \frac{1}{n_{2}}
$$

where $S D \sqrt{\frac{n_{1}}{} 1 S D_{1}^{2} \quad n_{2} \quad 1 S D_{2}^{2}} \begin{array}{llll}n_{1} & n_{2} & 2\end{array}$
$S E \bar{x}_{1} \quad \bar{x}_{2} \quad \sqrt{\frac{n_{1}}{} 1 S D_{1}^{2} \quad n_{2}} 1 \quad 1 S D_{2}^{2}-\frac{1}{n_{1}} \quad n_{2} \quad 2 \quad \frac{1}{n_{1}} \quad \frac{1}{n_{2}} \quad$ DrSandeshN
4) Calculate degree of freedom

$$
\begin{array}{llllllll}
d f & n_{1} & 1 & n_{2} & 1 & n_{1} & n_{2} & 2
\end{array}
$$

5) Compare the calculated value $\&$ the table value
6) Draw conclusions

Example difference b/n caries experience of high \& low socioeconomic group

S1 no	Details	High socio economic group	Low socio economic group
I	Sample size	$n_{1} \quad 15$	$n_{2} \quad 10$
II	DMFT	$\bar{x}_{1} \quad 2.91$	$\bar{x}_{2} \quad 2.26$
III	Standard deviation	$S D_{1} \quad 0.27$	$S D_{2} \quad 0.22$

$t \frac{\mid \bar{x}_{1}}{} \bar{x}_{2}| |\left(\frac{0.65}{S E} \bar{x}_{1} \quad \bar{x}_{2} \quad 6.34, \quad d f \quad 23\right.$

$$
\begin{array}{llll}
t_{0.001} & 3.76 & t_{c} & t_{0.001}
\end{array}
$$

There is a significant difference

Table A3 Percentage points of the t distribution. T table
Adapted from Table 7 of White et al. (1979) with permission of authors and publishers.

	0.25	O. 1	0.05	$\begin{aligned} & \text { One-sided } \\ & 0.025 \end{aligned}$	P value 0.01	0.005	0.0025	0.001	0.0005
					P value				
d.f.	0.5	0.2	O. 1	0.05	0.02	0.01	0.005	0.002	0.001
1	1.00	3.08	6.31	12.71	31.82	63.66	127.32	318.31	636.62
2	0.82	1.89	2.92	4.30	6.96	9.92	14.09	22.33	31.60
3	0.76	1.64	2.35	3.18	4.54	5.84	7.45	10.21	12.92
4	0.74	1.53	2.13	2.78	3.75	4.60	5.60	7.17	8.61
5	0.73	1.48	2.02	2.57	3.36	4.03		5.89	6.87
6	0.72	1.44	1.94	2.45	3.14	3.71	4.32	5.21	5.96
7	0.71	1.42	1.90	2.36	3.00	3.50	4.03	4.78	5.41
8	0.71	1.40	1.86	2.31	2.90	3.36	3.83	4.50	5.04
9	0.70	1.38	1.83	2.26	2.82	3.25	3.69	4.30	4.78
10	0.70	1.37	1.81	2.23	2.76	3.17	3.58	4.14	4.59
11	0.70	1.36	1.80	2.20	2.72	3.11	3.50	4.02	4.44
12	0.70	1.36	1.78	2.18	2.68	3.06	3.43	3.93	4.32
-13	0.69	1.35	1.77	2.16	2.65	3.01	3.37	3.85	4.22
14	0.69	1.34	1.76	2.14	2.62	2.98	3.33	3.79	4.14
15	0.69	1.34	1.75	2.13	2.60 ~	2.95	3.29	3.73	4.07
16	0.69	1.34	1.75	2.12	$2,58$	2.92	3.25	3.69	4.02
17	0.69	1.33	1.74	2.11	2.57	2.90	3.22	3.65	3.96
18	0.69	1.33	1.73	2.10	2.55	2.88	3.20	3.61	3.92
19	0.69	1.33	1.73	2.09	2.54	2.86	3.17	3.58	3.88
20	0.69	1.32	1.72	2.09	2.53	2.84	3.15	3.55	3.85
21	0.69	1.32	1.72	2.08	2.52	2.83	3.14	3.53	3.82
22	0.69	1.32	1.72	2.07	2.51	2.82	3.12	3.50	3.79
23	0.68	1.32	1.71	2.07	2.50	2.81	3.10	3.48	3.77
24	0.68	1.32	1.71	2.06	2.49	2.80	3.09	3.47	3.74
25	0.68	1.32	1.71	2.06	2.48	2.79	3.08	3.45	3.72
26	0.68	1.32	1.71	2.06	2.48	2.78	3.07	3.44	3.71
27	0.68	1.31	1.70	2.05	2.47	2.77	3.06	3.42	3.69
28	0.68	1.31	1.70	2.05	2.47	2.76	3.05	3.41	3.67
29	0.68	1.31	1.70	2.04	2.46	2.76	3.04	3.40	3.66
30	0.68	1.31	1.70	2.04	$2.46=$	2.75	3.03	3.38	3.65
40	0.68	1.30	1.68	2.02	2.42	2.70	2.97	3.31	3.55
60	0.68	1.30	1.67	2.00	2.39	2.66	2.92	3.23	3.46
120	0.68	1.29	1.66	1.98	2.36	2.62	2.86	3.16	3.37
∞	0.67	1.28	1.65	1.96	2.33	2.58	2.81	3.09	3.29

Other applications

II) Difference \mathbf{b} / \mathbf{n} sample mean \& population mean

$$
t \frac{|\bar{x}|}{S E \quad S D / \sqrt{n}} \quad d f \quad n \quad 1
$$

III) Difference \mathbf{b} / \mathbf{n} two sample proportions

where $P \frac{n_{1} p_{1} n_{2} p_{2}}{n_{1} n_{2}}$
$Q \quad 1 \quad P$
$d f \quad n_{1} \quad n_{2} \quad 2$
Dr Sandesh N

Paired t test

Is applied to paired data of observations from one sample only when each individual gives a paired of observations
Here the pair of observations are correlated and not independent, so for application of
t test following procedure is used-

1. Find the difference for each pair $\begin{array}{lll}y_{1} & y_{2} & x\end{array}$
2. Calculate the mean of the difference (x) ie \bar{x}
3. Calculate the $S D$ of the differences \& later $S E$

$$
S E \quad \frac{S D}{\sqrt{n}}
$$

4. Test criterion $t \frac{\bar{x} 0}{S E d} \quad \frac{\bar{x}}{S D x / \sqrt{n}}$
5. Degree of freedom $d f \quad n \quad 1$
6. Refer t table \& find the probability of calculated value
7. Draw conclusions

Example to find out if there is any significant improvement in DAI scores before and after orthodontic treatment

Sl no	DAI before	DAI after	Difference	Squares
1	30	24	6	36
2	26	23	3	9
3	27	24	3	9
4	35	25	10	100
5	25	23	2	4
Total			24	158

Mean $x=\frac{x}{n}=\frac{24}{5}=4.8$
sum of squares, $\quad\left(\begin{array}{ll}x & \bar{x}\end{array}\right)^{2}=\left(\begin{array}{ll}6 & 4\end{array}\right)^{2}+\left(\begin{array}{ll}3 & 4\end{array}\right)^{2}+\left(\begin{array}{ll}3 & 4\end{array}\right)^{2}+\left(\begin{array}{ll}10 & 4\end{array}\right)^{2}+\left(\begin{array}{ll}2 & 4\end{array}\right)^{2}$
$S D=\sqrt{\frac{(x \quad \bar{x})^{2}}{n 1}}=\sqrt{\frac{46}{4}}=\sqrt{11.5}=3.391$
$S E=\frac{S D}{\sqrt{n}}=\frac{3.391}{\sqrt{5}}=1.5179$
$t_{c}=\frac{\bar{x}}{S E}=\frac{4.8}{1.5179}=3.162 \quad d f=n \quad 1=4$
but $t_{0.5}=2.78$
$t_{c}>t_{0.5}$ Hence significant

Z test (Normal test)

Similar to t test in all aspect except that the sample size should be > 30
In case of normal distribution, the tabulated value of Z at -
5% level $\quad Z_{0.05} \quad 1.960$
1% level $\quad Z_{0.01} \quad 2.576$
0.1% level $Z_{0.001} 3.290$

Z test can be used for

1. Comparison of means of two samples

$$
Z \begin{array}{llll}
\bar{x}_{1} \quad \bar{x}_{2} & \text { where } S E \bar{x}_{1} & \bar{x}_{2} & \sqrt{S E_{1}^{2}} \quad S E_{2}^{2} \\
\hline S E \bar{x}_{1} \quad \bar{x}_{2} & & \sqrt{\frac{S D_{1}^{2}}{n_{1}}} \frac{S D_{2}^{2}}{n_{2}}
\end{array}
$$

2. Comparison of sample mean \& population mean

$$
Z \frac{\mid \bar{x}}{\sqrt{\frac{S D^{2}}{n}}}
$$

3. Difference \mathbf{b} / \mathbf{n} two sample proportions

$$
Z \frac{p_{1} p_{2}}{\sqrt{P Q \frac{1}{n_{1}} \frac{1}{n_{2}}}} \quad \text { where } P \frac{n_{1} p_{1}}{} n_{2} p_{2} . n_{1} n_{2} .
$$

4. Comparison of sample proportion (or percentage) with population proportion (or percentage)

$$
Z \frac{p P}{\sqrt{P Q \frac{1}{n}}}
$$

Where $\mathrm{p}=$ sample proportion $\mathrm{P}=$ populn proportion

Analysis of variance (ANOVA)

Useful for comparison of means of several groups

Is an extension of student s t test for more than two groups

R A Fisher in 1920 s
Has four models

1. One way classification (one way ANOVA)
2. Single factor repeated measures design
3. Nested or hierarchical design
4. Two way classification (two way ANOVA)

One way ANOVA

Can be used to compare likeEffect of different treatment modalities Effect of different obturation techniques on the apical seal, etc,.

Groups (or treatments)	1	2	i	k
Individual values	x_{11}	x_{21}	$x_{i 1}$	$x_{k 1}$
	x_{12}	x_{22}	$x_{i 2}$	$x_{k 2}$
	$x_{1 n}$	$x_{2 n}$	$x_{i n}$	$x_{k n}$
Calculate				
No of observations	n	n	n	n
Sum of x values	${ }_{1} x_{11} x_{12} \ldots \ldots x_{1 m}$	T_{2}	T_{i}	T_{k}
Sum of squares	$\mathrm{s}_{1} x_{11}{ }^{2} x_{12}{ }^{2} \cdots x_{1}{ }^{2}$	S_{2}	S_{i}	S_{k}
Mean of values	$\bar{x}_{1} \frac{T_{1}}{n}$	\bar{x}_{2}	\bar{x}_{i}	\bar{x}_{k}

ANOVA table

$\begin{aligned} & \hline S l \\ & \text { no } \end{aligned}$	Source of variation	Degree of freedom	Sum of squares	Mean sum of squares	F ratio or variance ratio
I	Between Groups	$k \quad 1$	$x_{i} \quad \bar{x}^{2} \quad{ }_{i} x_{i}^{2} \quad \frac{T^{2}}{N}$	$S_{B}^{2} \frac{{ }_{i} x_{i} \bar{x}^{2}}{k 1}$	$\frac{S_{B}^{2}}{S_{W}^{2}} k \quad 1, N \quad k$
II	With in groups	$n \quad k$	${ }_{j} x_{i j} \bar{x}_{i}^{2} \quad{ }^{2} \quad{ }_{j} x_{i j}^{2} \quad \frac{T_{i}^{2}}{n_{i}}$	$S_{w}^{2} \frac{i j_{j} x_{i j}^{2} i_{i} T_{i}^{2} / n_{i}}{N k}$	
III	Total	$n 1$	${ }_{j} x_{i j} \bar{x}^{2} \quad i{ }_{j} x_{i j}^{2} \frac{T^{2}}{N}$	$S_{T}^{2} \frac{i_{j} x_{i j}^{2} T^{2} / N}{N 1}$	

Table A4 Percentage points of the F distribution.

Adapted from Table 4 of Armitage (1971) and Table 18 of Pearson \& Hartley (1966) with permission of the authors and publishers and the Biometrika Trustees.
The table gives a one-sided significance test for the comparison of two variances, as appropriate for use in analysis of variance. A two-sided test may be obtained by doubling the P values.
d.f. $\mathrm{f}_{1}=$ d.f. for numerator, d.f. $\mathrm{f}_{2}=$ d.f. for denominator

ANOVA

d.f. ${ }_{\text {d }}$																
d.f.	P value	1	2	3	4	5	6	7	8	9	10	20	40	60	120	∞
1	0.05	161	200	216	225	230	234	237	239	241	242	248	251	252	253	254
	0.025	648	800	864	900	922	937	948	957	963	969	993	1006	1010	1014	1018
	0.01	4052	5000	5403	5625	5764	5859	5928	5981	6022	6056	6209	6287	6313	6339	6366
	0.005	16211	20000	21615	22500	23056	23437	23715	23925	24091	24224	24836	25148	25253	25359	25465
	0.001 -	405300	500000	540400	562500	576400	585900	592900	598100	602300	605600	620900	628700	631300	634000	
2	0.05	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.45	19.47	19.48	19.49	19.50
	0.025	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40	39.45	39.47	39.48	39.49	39.50
	0.01	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39	99.40	99.45	99.47	99.48	99.49	99.50
	0.005	198.5	199.0	199.2	199.2	199.3	199.3	199.4	199.4	199.4	199.4	199.4	199.5	199.5	199.5	199.5
	0.001	998.5	999.0	999.2	999.2	999.3	999.3	999.4	999.4	999.4	999.4	999.4	999.5	999.5	999.5	999.5
3	0.05	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.66	8.59	8.57	8.55	8.53
	0.025	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42	14.17	14.04	13.99	13.95	13.90
	0.01	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35	27.23	26.69	26.41	26.32	26.22	26.13
	0.005	55.55	49.80	47.47	46.19	45.39	44.84	44.43	44.13	43.88	43.69	42.78	42.31	42.15	41.99	41.83
	0.001	167.0	148.5	141.1	137.1	134.6	132.8	131.6	130.6	129.9	129.2	126.4	125.0	124.5	124.0	123.5
4	0.05	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.80	5.72	5.69	5.66	5.63
	0.025	12.22	10.65	9.98	9.60	9.36	9.20	9.07	8.98	8.90	8.84	8.56	8.41	8.36	8.31	8.26
	0.01	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55	14.02	13.75	13.65	13.56	13.46
	0.005	31.33	26.28	24.26	23.15	22.46	21.97	21.62	21.35	21.14	20.97	20.17	19.75	19.61	19.47	19.32
	0.001	74.14	61.25	56.18	53.44	51.71	50.53	49.66	49.00	48.47	48.05	46.10	45.09	44.75	44.40	44.05

Example- see whether there is a difference in number of patients seen in a given period by practitioners in three group practice

Practice	A	B	C				
Individual values	268	387	161				
					349	264	346
	328	423	324				
	209	254	293				
	292		239				
Calculate							
No of observations (n)	5	4	5				
Sum of x values	1441	1328	1363				
Sum of squares	426899	462910	393583				
Mean of values	288.2	332.0	272.6				

Between group sum of squares

8215.71

Total sum of squares

$$
x_{A}^{2} \quad x_{B}^{2} \quad x_{C}^{2} \frac{x_{A} \quad x_{B} x_{C}{ }^{2}}{n_{A} \quad n_{B} n_{C}}
$$

63861.71

With in group sum of squares
total SS - between SS
55646.0

ANOVA table

Sl no	Source of variation	Degree of freedom	Sum of squares	Mean sum of squares	F ratio or variance ratio			
I	Between Groups	3	1	2	8215.71	$\frac{8215.71}{2}$	4107.86	$\frac{4107.86}{5088.73}$

$F \quad 0.81 \quad F_{0.05} \quad 3.98 \quad d f \quad 2,11$
Because $\mathrm{F}_{\mathrm{C}}<\mathrm{F}_{\mathrm{T}}$, there is no significant difference in the number of patients attending 3 different practice

Further, any particular pair of treatments can be compared using SE of difference b / n two means

Eg $\quad \bar{x}_{d} \& \bar{x}_{c}$
SE $\begin{array}{llll}\bar{x}_{d} & \bar{x}_{c} & \sqrt{M S E} \frac{1}{n_{d}} \quad \frac{1}{n_{c}}\end{array}$
\& difference $\bar{x}_{d} \quad \bar{x}_{c}$ may be tested by using
't' test criterion

$$
t \frac{\bar{x}_{d} \bar{x}_{c}}{S E \bar{x}_{d} \bar{x}_{c}}
$$

Two way ANOVA

Is used to study the impact of two factors on variations in a specific variable

Eg Effect of age and sex on DMFT value

2 way ANOVA table

Sl no	Source	Sum of squares	Degree of freedom	Mean sum of squares $(M S S)$	Variance ratio F				
I	Blocks	$S S_{\text {blocks }}$	n	1	$M S_{\text {blocks }}$	$\frac{S S_{\text {blocks }}}{n 1}$	F_{1}	$\frac{M S_{\text {blocks }}}{M S_{\text {residual }}}$	
II	Treatments	$S S_{\text {treatments }}$	k	1	$M S_{\text {treatments }}$	$\frac{S S_{\text {treatments }}}{k} 1$	F_{2}	$\frac{M S_{\text {treatment }}}{M S_{\text {residual }}}$	
III	Residual or error	$S S_{\text {residual }}$	n	1	k	1	$M S_{\text {residual }}$	$\frac{S S_{\text {residual }}}{n} 1$	
IV	Total	$S S_{\text {total }}$	$n k$	1	N	1			

$F_{1} \quad$ variance ratio of blocks with $d f$ of $\begin{array}{lllllll}n & 1 & \mathrm{Vs} & n & 1 & k & 1\end{array}$ $F_{2} \quad$ variance ratio of treatment 's with $d f$ of $k \quad 1$ Vs $n{\underset{\text { Dr Sandesh }}{ } 1 k}_{1}^{l}$

Multiple comparison tests

1. Fisher s procedure student $s t$ test
2. Least significant difference method (LSD)

Just like student s test
To test significant difference b/n two groups or variable means
3. Scheffe s significant difference procedure Is applicable when groups having heterogeneous variance or variations
4. Tukey s method

For comparison of the differences b/n all possible pairs of treatments or group means
5. Duncan s multiple comparison test

For all comparisons of paired groups only
6. Dunnet s comparison test procedure

For comparison of one control and several treatment groups

Non parametric tests

Here the distribution do not require any specific pattern of distribution. They are applicable to almost all kinds of distribution

Chi square test
Mann Whitney U test
Wilcoxon signed rank test
Wilcoxon rank sum test
Kendall s S test
Kruskal wallis test
Spearman s rank correlation

Chi square test

By Karl Pearson \& denoted as

 Application1. Alternate test to find the significance of difference in two or more than two proportions
2. As a test of association b/n two events in binomial or multinomial samples
3. As a test of goodness of fit

Requirement to apply chi square test

Random samples
Qualitative data
Lowest observed frequency not less than 5
Contingency table
Frequency table where sample classified according to two different attributes
2 rows ; 2 columns $=>2 \times 2$ contingency table r rows : c columns => rXc contingency table

O observed frequency
E expected frequency

Steps

1. State null \& alternate hypothesis
2. Make contingency table of the data

$$
r \quad c
$$

3. Determine expected frequency by

$$
E \frac{r c}{N \text { total frequency }}
$$

4. Calculate chi-square of each by-

$$
{ }^{2} \frac{O \quad E^{2}}{E}
$$

5. calculate degree of freedom
6. Sum all the chi-square of each cell this gives chi-square value of the data

$$
2 \quad \frac{O \quad E^{2}}{E}
$$

7. Compare the calculated value with the table value at any LOS
8. Draw conclusions

Example from a dental health campaign

School	Oral hygiene				
	Total				
	G	F_{+}	F.	P	
Below avg	62	103	57	11	233
	(85.9)	(93.0)	(45.2)	(8.9)	
Avg	50	36	26	7	119
	(43.9)	(47.5)	(23.1)	(4.6)	
Above avg	80				
	(62.3)	69	18	2	169
Total	192	208	(32.8)	(6.5)	
$r \quad c$	101	20	521		
N total frequency					

${ }_{c}^{2} \quad \frac{O E^{2}}{E} \quad 31.4 \quad$ Table ${ }_{t}^{2}$ at $\mathrm{P} \quad 0.001$ is 22.46
Hence significant difference

Table A5 Percentage points of the χ^{2} distribution.

Adapted from Table 8 of White et al. (1979) with permission of the authors and publishers. d.f. $=1$. In the comparison of two proportions ($2 \times 2 x^{2}$ or Mantel-Haenszel x^{2} test) or in the assessment of a trend, the percentage points give a two-sided test. A one-sided test may be obtained by halving the P values. (Concepts of one- and two-sidedness do not apply to larger degrees of freedom, as these relate to tests of multiple comparisons.)

d.f.	P value							
	0.5	0.25	O. 1	0.05	0.025	0.01	0.005	0.001
1	0.45	1.32	2.71	3.84	5.02	6.63	7.88	10.83
2	1.39	2.77	4.61	5.99	7.38	9.21	10.60	13.82
3	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	3.36	5.39	7.78	9.49	11.14	13.28	14.86	18.47
5	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	7.34	10.22	13.36	15.51	17.53	20.09	21.96	26.13
9	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59
11	10.34	13.70	17.28	19.68	21.92	24.73	26.76	31.26
12	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91
13	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53
14	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12
15	14.34	18.25	22.31	25.00	27.49	30.58	32.80	37.70
16	15.34	19.37	23.54	26.30	28.85	32.00	34.27	39.25
17	16.34	20.49	24.77	27.59	30.19	33.41	35.72	40.79
18	17.34	21.60	25.99	28.87	31.53	34.81	37.16	42.31
19	18.34	22.72	27.20	30.14	32.85	36.19	38.58	43.82
20	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.32
21	20.34	24.93	29.62	32.67	35.48	38.93	41.40	46.80
22	21.34	26.04	30.81	33.92	36.78	40.29	42.80	48.27
23	22.34	27.14	32.01	35.17	38.08	41.64	44.18	49.73
24	23.34	28.24	33.20	36.42	39.36	42.98	45.56	51.18
25	24.34	29.34	34.38	37.65	40.65	44.31	46.93	52.62
26	25.34	30.43	35.56	38.89	41.92	45.64	48.29	54.05
27	26.34	31.53	36.74	40.11	43.19	46.96	49.64	55.48
28	27.34	32.62	37.92	41.34	44.46	48.28	50.99	56.89
29	28.34	33.71	39.09	42.56	45.72	49.59	52.34	58.30
30	29.34	34.80	40.26	43.77	46.98	50.89	53.67	59.70
40	39.34	45.62	51.81	55.76	59.34	63.69	66.77	73.40
50	49.33	56.33	63.17	67.50	71.42	76.15	79.49	86.66
60	59.33	66.98	74.40	79.08	83.30	88.38	91.95	99.61
70	69.33	77.58	85.53	90.53	95.02	100.43	104.22	112.32
80	79.33	88.13	96.58	101.88	106.63	112.33	116.32	124.84
90	89.33	98.65	107.57	113.15	118.14	124.12	128.30	137.21
100	99.33	109.14	118.50	124.34	129.56	135.81	140.17	149.45

Alternate formulae

If we have contingency table

a	b	$a+b$
c	d	$c+d$
$a+c$	$b+d$	$a+b+c+d=N$

If one of the value is below 5 => Yates s
correction formula

$$
\left.2^{\frac{N}{2}} \frac{N a d}{} \quad b c \right\rvert\, \frac{N}{2}{ }^{2} 1
$$

If the table is larger than 2×2, Yate s correction cannot be applied then the small frequency (<5) can be pooled or combined with next group or class in the table

Chi square test only tells the presence or absence of association, but does not measure the strength of association

If degree of association as to be

 calculated then1. Yule s coefficient of association $Q \frac{a d b c}{a d b c}$
2. Yule s coefficient of colligation Y $Y \frac{1 \sqrt{b c / a d}}{1 \sqrt{b c / a d}}$
3. Pearson s coefficient of contingency

Wilcoxon signed rank test

Is equivalent to paired t test Steps

Exclude any differences which are zero
Put the remaining differences in ascending order, ignoring the signs
Gives ranks from lowest to highest
If any differences are equal, then average their ranks
Count all the ranks of positive differences $\quad T_{+}$
Count all the ranks of negative differences $\quad T$ -

If there is no differences b/n variables then T_{+} \& T_{-}will be similar, but if there is difference then one sum will be large and the other will be much smaller
$T=$ smaller of $T_{+} \& T_{-}$
Compare the T value with the critical value for $5 \%, 2 \% \& 1 \%$ significance level
A result is significant if it is smaller than critical value

Example:Results of a placebo-controlled clinical trail to test the effectiveness of sleeping drug

Patients	Sleep hrs	
	Drug	Placebo
1	6.1	5.2
2	7.0	7.9
3	8.2	3.9
4	7.6	4.7
5	6.5	5.3
6	8.4	5.4
7	6.9	4.2
8	6.7	6.1
9	7.4	3.8
10	5.8	6.3

Difference
0.9
-0.9
4.3
2.9
1.2
3.0
2.7
0.6
3.6
-0.5

Rank with signs	
+	-
3.5	-
-	-3.5
10	-
7	-
5	-
8	-
6	-
2	-
9	-
-	-1
50.5	-4.5

Calculated $T=-4.5 d f=10$,
Table value at $5 \%(n=10)=8$

Cal $T<$ table value, H_{0} is rejected

We conclude that sleeping drug is more effective than the placebo

Mann Whitney U test

Is used to determine whether two independent sample have been drawn from same sample
It is a alternative to student t test $\&$ requires at least ordinal or normal measurement

$$
U \quad n_{1} n_{2} \quad \frac{n_{1} n_{1} \quad 1}{2} \quad R_{1} \text { or } R_{2}
$$

Where, $\mathrm{n}_{1} \mathrm{n}_{2}$ are sample sizes
$\mathrm{R}_{1} \mathrm{R}_{2}$ are sum of ranks assigned to I \& II group

Procedure

All the observation in two samples are ranked numerically from smallest to largest without regarding the groups

Then identify the observation for I and II samples

Sum of ranks for I and II sample determined separately

Take difference of two sum $T=R_{1}-R_{2}$

Comparison of birth weights of children born to 15 non smokers with those of children born to 14 heavy smokers

NS	3.9	3.7	3.6	3.7	3.2	4.2	4.0	3.6	3.8	3.3	4.1	3.2	3.5	3.5	2.7
HS	3.1	2.8	2.9	3.2	3.8	3.5	3.2	2.7	3.6	3.7	3.6	2.3	2.3	3.6	

Ranks assignments

R1	26	23	16	21	8	29	27	17	24	12	28	10	15	13	03
R2	7	5	6	11	25	14	9	4	20	22	19	2	1	18	

Sum of $R_{1}=272$ and Sum of $R_{2}=163$
Difference $T=R_{1} \quad R_{2}$ is 109

The table value of $T_{0.05}$ is 96 , so reject the H_{0}

We conclude that weights of children born to the heavy smokers are significantly lower than those of the children born to the non-smokers ($p<0.05$)

Applications of statistical tests in Research Methods

One variable

One variable,

 two group sample problemOne variable

One variable

of interest

One variable, multiple group sample problem

More than a
two sample
problem

Underlying distribution
normal or can central
limit theorem hold?

Two variable problem

Interested in relationship
」b/n two variables
Use linear Yes Are both continuous variables regression No
Is one variable continuous
\& other categorical

Or
Logistic regression

Multiple variable problem

Research interested in relationship
B / n more than two variables

Use multiple regression Or
Multivariate analysis

Conclusion

Statistics are excellent tools in research data
analysis; how ever, if inappropriately used they may
make the results of a well conducted research study
un-interpretable or meaningless

Bibliography

Biostatistics
Rao K Vishweswara, Ist edition.
Methods in Biostatistics
Dr Mahajan B K, $5^{\text {th }}$ edition.
Essentials of Medical Statistics
Kirkwood Betty R, $1^{\text {st }}$ edition.
Health Research design and Methodology
Okolo Eucharia Nnadi.
Simple Biostaistics
Indrayan, $1^{s t}$ edition.
Statistics in Dentistry
Bulman J S

Thank U

 Now

